Using The Superposition Principle

By superposition, any visibility (or modulation profile) for an extended source can be represented as a sum over the responses to a set of point sources. (This is just applied Fourier analysis.) The visibility for a point source if flux A at (x,y) is:

$$\mathbf{V}_{pt} = Ae^{2\pi i(ux + vy)} \tag{1}$$

where u and v are the coordinates in the Fourier plane at angle ϕ for grids of angular pitch p

$$u = 2\pi \cos(\phi)/p, \qquad v = 2\pi \sin(\phi)/p \tag{2}$$

For an RMC like RHESSI, the fundamental component of the response to a point source is a similar sinusoid, with suitable modifications for the slowly varying grid transmission and slit-slat ratios:

$$C_{nt} = F_0 g(\phi) \left[1 + \rho(\phi) m(\phi) \cos(ux + vy - \Phi) \right]$$
(3)

In this expression, F_0 is the flux of the point source, $g(\phi)$ is the grid transmission × livetime at angle ϕ , $m(\phi)$ is the maximum modulation amplitude, $\rho(\phi)$ is the relative amplitude, and Φ is the phase at map center.

An extended source with a brightness distribution I(x, y) (normalized to unity) will produce a modulation profile given by:

$$C_{ext} = F_0 \int \int I(xy) \{ g(\phi) [1 + m(\phi) \cos(ux + vy - \Phi)] \} dxdy$$
 (4)

This is considerably simplified for Gaussian sources, round sources, or "separable" sources.

Gaussian Sources

It is readily shown that for an elliptical Gaussian of the form

$$G(x', y') = \frac{1}{\sqrt{\pi ab}} e^{-(x'/a)^2 - (y'/b)^2}$$
(5)

where the coordinates have be rotated and shifted via:

$$x' = (x - x_0) \cos \alpha - (y - y_0) \sin \alpha, \qquad y' = (x - x_0) \sin \alpha + (y - y_0) \cos \alpha$$
 (6)

and

$$u' = u \cos \alpha - v \sin \alpha, \qquad v' = u \sin \alpha + v \cos \alpha$$
 (7)

produces the RHESSI response:

$$C_{qau}(\phi) = F_0 g(\phi) \{ 1 + m(\phi) e^{-\pi^2 (u'^2 a^2 + v'^2 b^2)} \cos(u' x_0 + v' y_0 - \Phi)$$
 (8)

This shows that the response is the same as a point source at (x_0, y_0) with amplitude reduced by the factor:

$$\rho_{gau}(\phi) = e^{-\pi^2([kacos(\phi - \alpha)]^2 + [kbsin(\phi - \alpha)]^2)}$$
(9)

General Round Sources

If the profile I(x,y) of the source is not necessarily Gaussian but is round (independent of θ), the relative amplitude is given by the integral

$$\rho = 2\pi \int I(r) \ J_0(kr)rdr, \quad \text{where} \quad 2\pi \int I(r)rdr = 1$$
 (10)

Profiles of this form that may be integrated analytically are:

(a) Lorentzians

$$I(r) = \frac{1}{2\pi} \frac{a}{(r^2 + a^2)^{3/2}}; \qquad \rho(k) = e^{-ka}$$
(11)

$$I(r) = \frac{1}{2\pi} \frac{2a^2}{(r^2 + a^2)^2}; \qquad \rho(k) = kK_1(ka)$$
 (12)

$$I(r) = \frac{1}{2\pi} \frac{3a^3}{(r^2 + a^2)^{5/2}}; \qquad \rho(k) = (1 + ka)e^{-ka}$$
 (13)

b) Exponential

$$I(r) = \frac{1}{2\pi a^2} e^{-r/a}; \qquad \rho(k) = \frac{1}{(1+k^2 a^2)^{3/2}}$$
 (14)

(c) Gaussian

$$I(r) = \frac{1}{2\pi a^2} e^{-\frac{1}{2}r^2/a^2}; \qquad \rho(k) = e^{-\frac{1}{2}k^2a^2}$$
(15)

(d) Pillbox

$$I(r) = \frac{1}{2\pi a^2}$$
 if $r \le a$, and 0 if $r > a$; $\rho(k) = 2J_1(ka)/ka$ (16)

In all cases as $a \to 0$ or $k \to 0$, $\rho(k) \to 1$, as expected.

Separable Profiles

By "separable" we mean that the radial and azimuthal dependences are uncorrelated:

$$I(r) = R(r)T(\theta) \tag{17}$$

This gives the following result for the relative amplitude:

$$\rho_{sep}(\phi) = Re \int_0^\infty \int_0^{2\pi} R(r) T(\theta) e^{ikr\cos(\theta - \phi)} e^{-i\Phi} r dr \ d\theta \tag{18}$$

We can Fourier analyze $T(\theta)$

$$T(\theta) = \sum_{m=-\infty}^{\infty} \tau_m e^{im\theta} \tag{19}$$

Then doing the azimuthal integrals we get:

$$\rho_{sep}(\phi) = Re \sum_{m=-\infty}^{\infty} \tau_m e^{im\phi - i\Phi} \int_0^{\infty} R(r) J_m(kr) r dr$$
 (20)

Exponential Profile

An example of a function R(r) which has explicit integrals for all m is:

$$R(r) = p^2 e^{-pr}$$
 normalized to $\int_0^\infty rR(r)dr = 1$ (21)

From Gray and Matthews (1958).

$$H(k,p) = p^2 \int_0^\infty r J_m(kr) e^{-pr} dr = \mu^2 \left(\frac{1-\mu}{1+\mu}\right)^{m/2} [m+\mu] \quad \text{where} \quad \mu = p/\sqrt{p^2 + k^2}$$
(22)

The above equation is asymptotically correct for $k \ll 1$ and all p > 0.

$$\lim_{k \to 0} H(k, p) = (m+1) \left(\frac{k}{2p}\right)^m \tag{23}$$

Numerical integration using QROMB corroborates the expression for H(k,p) to several decimal places, and it agrees with the special cases m=0 and m=1 in Gradshteyn and Rhyzik (1994):

$$\int_0^\infty r J_0(kr)e^{-pr}dr = p/(k^2 + p^2)^{3/2}$$
 (24)

$$\int_0^\infty r J_1(kr)e^{-pr}dr = k/(k^2 + p^2)^{3/2}$$
 (25)

Gaussian Profile

Another example of a function R(r) which has explicit integrals for all m is:

$$R(r) = a^2 e^{-\frac{1}{2}(r/a)^2}$$
 normalized to $\int_0^\infty rR(r)dr = 1$ (26)

From Abramowitz and Stegun (1966),

$$a^{2} \int_{0}^{\infty} r J_{m}(kr) e^{-\frac{1}{2}(r/a)^{2}} dr = \frac{\Gamma(m/2+1)}{2^{m/2+1}\Gamma(m+1)} (ka)^{m} M(m/2+1, m+1, -2k^{2}a^{2})$$
(27)

where M is the confluent hypergeometric function.

Lorentzian Profile

A third example of a function R(r) which has explicit integrals is:

$$R(r) = \frac{1}{2(p-1)} \frac{a^2}{(1+(r/a)^2)^p}$$
 normalized to $\int_0^\infty rR(r)dr = 1$ (28)

$$\int_0^\infty \frac{rJ_m(kr)}{(1+(r/a)^2)^p} dr = (k/2)^{p-1} a^{-m} / \Gamma(p) K_{1-p}(ka)$$
 (29)

Using $K_{-1/2} = \sqrt{\pi/2ka}e^{-ka}$,

$$\int_0^\infty \frac{rJ_m(kr)}{(1+(r/a)^2)^p} dr = e^{-ka}$$
(30)